Cell proliferation and oxygen diffusion in a vascularising scaffold.

نویسندگان

  • Kerry A Landman
  • Anna Q Cai
چکیده

The supply of oxygen to proliferating cells within a scaffold is a key factor for the successful building of new tissue in soft tissue engineering applications. A recent in vivo model, where an arteriovenous loop is placed in a scaffold, allows a vascularising network to form within a scaffold, establishing an oxygen source within, rather than external, to the scaffold. A one-dimensional model of oxygen concentration, cell proliferation and cell migration inside such a vascularising scaffold is developed and investigated. In addition, a vascularisation model is presented, which supports a vascularisation front which moves at a constant speed. The effects of vascular growth, homogenous and heterogenous seeding, diffusion of cells and critical hypoxic oxygen concentration are considered. For homogenous seeding, a relationship between the speed of the vascular front and a parameter defining the rate of oxygen diffusion relative to the rate of oxygen consumption determines whether a hypoxic region exists at some time. In particular, an estimate of the length of time that a fixed point in the scaffold will remain under hypoxic conditions is determined. For heterogenous seeding, a Fisher-like travelling wave of cells is established behind the vascular front. These findings provide a fundamental understanding of the important interplay between the parameters and allows for a theoretical assessment of a seeding strategy in a vascularising scaffold.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Proliferation Study of hiPS Cell-Derived Neuronal Progenitors on Poly-Caprolactone Scaffold

Introduction: The native inability of nervous system to regenerate, encourage researchers to consider neural tissue engineering as a potential treatment for spinal cord injuries. Considering the suitable characteristics of induced pluripotent stem cells (iPSCs) for tissue regeneration applications, in this study we investigated the adhesion, viability and proliferation of neural progenitors (de...

متن کامل

Oxygen diffusion through natural extracellular matrices: implications for estimating "critical thickness" values in tendon tissue engineering.

Oxygen is necessary for maintaining cell proliferation and viability and extracellular matrix (ECM) production in 3-dimensional tissue engineering. Typically, diffusion is the primary mode for oxygen transport in vitro; thus, ensuring an adequate oxygen supply is essential. In this study, we determined the oxygen diffusion coefficients of 3 natural ECMs that are being investigated as construct ...

متن کامل

The proliferation of fibroblast cells on the polycaprolactane-chitosan-tannic acid scaffold

Background and Objective: Tissue engineering is a new method for replacing damaged tissue components in order to improve its function. In this method, a porous scaffold mixed with polysaccharide and synthetic antioxidants is first produced and then stem cells are cultured inside it. In this study, the polycaprolactane-chitosan-tannic acid scaffold was used to reproduce the amount Fibroblast cel...

متن کامل

Fabrication of Silk Scaffold Containing Simvastatin-Loaded Silk Fibroin Nanoparticles for Regenerating Bone Defects

Background: In the present study, a tissue engineered silk fibroin (SF) scaffold containing simvastatin-loaded silk fibroin nanoparticles (SFNPs) were used to stimulate the regeneration of the defected bone. Methods: At first, the porous SF scaffold was prepared using freeze-drying. Then simvastatin-loaded SFNPs were made by dissolvation method and embedded in the SF scaffold. Afterwards, the ...

متن کامل

Improved BALB/c mice granulosa cell functions using purified alginate scaffold

Alginate, a non-toxic polysaccharide isolated from brown algae, is a widely used 3-dimensional (3D) porous scaffold for the granulosa cell and follicle encapsulation. However, impurities in commercial alginate can lead to alginate biocompatibility reduction. The aim of this study was to evaluate in vitro behavior of the granulosa cells seeded on the purified alginate in varying concent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bulletin of mathematical biology

دوره 69 7  شماره 

صفحات  -

تاریخ انتشار 2007